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Abstract-The classical approach to shakedown in elastic-plastic structures is extended here to
include unlimited time dependent creep in a new way: by way of illustration a simple time-hardening
model is used. Shakedown analysis for creep is typically investigated in two steps: an elastic-plastic
shakedown analysis based on the classical theorems followed by a correction for creep, for example
based on isochronous stress-strain curves for large times with limited creep. This paper provides a
different treatment of the problem of estimating creep strains where shakedown could occur by
extending the classical shakedown approach to include unlimited creep. New static and kinematic
shakedown theorems are established and it is demonstrated that a necessary and sufficient condition
for shakedown with mechanical and thermal cyclic loading is the existence of a time-dependent safe
residual stress field. Two kinematic theorems are introduced: the first connected with a kinematically
admissible cycle of inelastic strain rate and the second with kinematically inadmissible plastic strain
rate. In addition all of the results are expressed in terms of generalized variables for structural
applications. A few simple examples are examined to verify these results. © 1998 Elsevier Science
Ltd. All rights reserved.

INTRODUCTION

At loading around the yield stress and above practically all structural materials give evidence
that the formation of inelastic strain is dependent on time, in particular influenced by
the rate of loading. Under appropriate conditions, creep and relaxation phenomena are
observed-these effects exist even at room temperature, but become much more pronounced
at elevated temperature, when accumulation ofcreep strain is a critical design consideration.
When the load is cyclic, the estimation of inelastic strain becomes problematic. This problem
has been well recognized even in the earliest literature on shakedown. Many pioneering
authors (Bree, 1967; Gokhfeld, 1970; Leckie, 1971; Ponter, 1971; Gokhfeld and Cher­
niavsky, 1974; O'Donnel and Porowski, 1974; Gokhfeld and Cherniavksy, 1980; Konig,
1987; Rose and White, 1988; Toulios et al., 1991) have considered the possibility of
including the effect of time dependent strains (high temperature creep in particular) on
shakedown.

Shakedown analysis for creep is typically investigated in two distinct steps: an elastic
plastic shakedown analysis based on the classical theorems (Melan, 1938; Koiter, 1956;
Koiter, 1960), followed by a correction for creep (Bree, 1967; Ponter, 1971 ; Gokhfeld and
Cherniavsky, 1974; O'Donnel and Porowski, 1974; Gokhfeld and Cherniavsky, 1980).
Arguably this can only give a rough estimate of actual shakedown behaviour at best.

In some situations material creep strain accumulation may be limited when secondary
creep strain rates are zero. Limited creep appears at stresses close to the yield stress at room
temperature in metals, alloys and other structural materials (Rabotnov, 1969). Limited
creep is usually irrecoverable when load is removed and is characterized by a relatively
short primary phase. These characteristics make it possible to implement an approximate
shakedown analysis using isochronous stress-strain curves for large times. However with
temperature or stress increasing, creep becomes unlimited. In fact, in most treatments of
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shakedown in the presence of unlimited creep isochronous stress-strain curves are also
applied with an age-hardening creep theory at the dwell stage. These curves are then
approximated by the elastic-rigid plastic response (O'Donnel and Porowski, 1974; Gokh­
feld and Cherniavsky, 1980; Rose and White, 1988; Toulios et al., 1991). Whether or not
it is valid as an approximation to use isochronous curves in this manner, it must be
emphasized that time dependent creep strains do not occur only at the dwell stage and
further that the age-hardening rule gives unsatisfactory results for non-steady loading in
general and for cyclic loading in particular.

This paper provides a different approach to the treatment of the problem of the
estimation of creep strains under cyclic loads where shakedown could occur. The classical
approach to elastic-plastic shakedown of structures is extended to include unlimited creep
rather than treating creep as an additional problem; by way of illustration a time-hardening
creep model is adopted.

DEFINITION OF THE PROBLEM

In the following the classical results and procedures of Melan (1938) and Koiter (1956,
1960) are extended step-by-step to examine the possibility of including unlimited creep. In
this Section, the usual definition of the problem is given in terms of local stress and strain.
However in addition this is extended to examine the possibility of using generalised inelastic
models (Boyle and Spence, 1983), such as structural beam, plate and shell theories.

We deal here with a structure or solid body, occupying a volume V, under quasistatic
cyclic loading. The time history ofexternal actions is periodic in real time. The displacements
of all points in the body, as well as their gradients, are assumed to be sufficiently small
that changes in geometry are neglected in the equilibrium equations and that the strain­
displacement relations are linear.

The total strain rates BU are then considered as the sum of four components

(1)

were e;j, e;j, e;;, e~ are elastic, plastic, creep and initial (or thermal) strain rates, respectively
(Kachanov, 19(7).

Elastic strains are given by Hooke's law

S;j = Aijklakl; i,j, k, I = 1,2,3 (2)

where akl is the stress tensor and Aijk, is a tensor ofconstant elastic moduli, AUkl = Ajikl = Aklij.
Temperature-dependence of the elastic constants is neglected since this only weakly effects
the shakedown condition (Gokhfeld and Cherniavsky, 1980).

Plastic material behaviour is considered to be perfect plasticity with a yield criterion

(3)

and associated flow rule

(4)

where K is a material constant depending on temperature e and Ie denotes a constant of
proportionality such that

Ie = 0 ifj< K or ifj= K and (8j/8ai;)aii - (8K/8e)8 < 0;

A~O ifj=K and (8j/8aiJa ij -(8K/8e)8=0
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Creep strains are given by the time-hardening creep rule derived from a convex homo­
geneous function <1>((Ji) such that

(.) -_ dd(r) " (I [' 8( ')] d '\ r = Jo g t, t t (5)

where t is the real time and g(t,8) is proportional to the creep strain rates at constant
stresses.

The actual structural stress field (Ju and strain field IOU can be represented by the
following decomposition

where lOW and oW denote the fields which would appear in the structure if the structure was
perfectly elastic, while Pu and 6ijr are instantaneous residual stress and strain fields.

The residual strain field is further given by

(6)

where 6;jr is the residual elastic strain field. According to eqn (2), 6;jr = AUkIPkl' If a stress
field meets the requirement of eqn (3) then it is a safe stress field oW, and the corresponding
field variables are denoted Poj' sUn 6;jn 6;7 (ft;j = 0 by definition).

Generalized models
This simplified approach to shakedown analysis follows the use of a generalized model

of the structure. Generalized models have typically considered structural configurations
based on beam, plate or shell theory where the constitutive model is not given in terms of
local stress and strain, but instead uses generalized measures of stress and strain, such as
beam curvature and moment or shell mid-surface bending and stretching strains and stress
resultants (Boyle and Spence, 1983). However this is not a specific restriction on the notion
of generalized models-in general these may also be interpreted as substructures (Konig,
1987).

Consider the following, which is analogous to eqn (1) :

Urn = U;"+U~,+U;;;+U?n, m = 1,2, ...

where Urn are the generalized displacements, U~, are the elastic generalized displacements,
linearly dependent on the generalized forces Qrn, U;" = ArnnQn, m, n = 1,2, ... , u~ are
generalized thermal displacements, U':" are the generalized displacements corresponding to
perfect plasticity (Konig, 1987) such that

of." AUrn = oQrn;

A = 0 ifF < K' or ifF = K' and t - K' < 0;

A ~ 0 ifF = K' and t - K' = 0

where K' is a parameter of the generalised yield locus for the structure or substructure, and
F is a strict convex homogeneous function of the generalised forces,

(7)

Finally, U':" are generalized displacements due to creep-it is straightforward to obtain a
time-hardening relationship (Kachanov, 1967; Boyle and Spence, 1983)
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(8)

due to convexity.
If a structure is considered to be composed of substructures, we will denote external

imposed generalized forces of the whole structure by Pm, and generalized displacements
and forces of the substructure rt (rt = 1,2, ...) by U;;:l, Q;;:l.

For a substructure (Konig, 1987) we can write

where at is a stress field, which would appear in the reference substructure if the substructure
was perfectly elastic under the residual generalized forces, and Sij is a corresponding instan­
taneous residual stress field. The thermo-elastic stress field may be decomposed as follows

where aWl is an elastic stress field due to the mechanical loads Pm and p~ is an elastic stress
field due to the temperature gradient.

Then

a~e)(Xb t) = Q~e)(t)aij(xk); at(xb t) = Q~rl(t)aij(xk)

6t(Xb t) = Q~.rl(t)aij(xk)

where Xk are space coordinates, Q~e) is an elastic generalized force field for the substructures
due to the mechanical loads Pm, Q;;:8l is a generalized force field for the substructure rt due
to a temperature stress field and Q;;:r) is a residual generalized force field for the substructure
rt under mechanical and thermal unloading.

STATIC SHAKEDOWN THEOREM FOR CREEP

In classical shakedown analysis it is assumed that if a given elastic-plastic structure
has already shaken down then the residual stress field will not vary any more (Melan, 1938).
For a creeping structure under variable loading the existence of a constant residual stress
field is of course impossible. Therefore we will assume here that rhe necessary condition for
shakedown is the existence of a time-dependent safe residual stress field PI}' which, when
taken together with the thermo-elastic stresses, is a stress field not violating the yield
criterion at any point of a structure at any instant of time.

We now demonstrate that this condition is also a sufficient one:

Theorem. If there exists time-dependent residual stresses PI} such that when added to the
thermo-elastic stresses a~;) results in safe stresses aW at any point of creeping structure at
any instant of time

(9)

then the structure will plastically shake down under periodic loading, that is, its behaviour
will become elastic-creeping after some initial cycles, in any load and temperature program
within prescribed limits.
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To establish this result, we consider the non-negative elastic complementary energy
functional of self-equilibrium stresses Pij- {Jij

The actual and safe residual fields, and hence A, are time-dependent with the rate of change
of A

(10)

Since the residual strain rates sijr and 8ilr form compatible fields, and since Pij and {Jij are
both self-equilibrated, it follows from the principle of virtual work that

Therefore, from the equalities given byeqns (6), (9) and (10), we have

A(t) = - i(a· - a(S)) (tn. + t~!~ - 8~1!) dV
1J I) IJ IJ lJ

V

For the convex function II>

and since alP does not violate the yield criterion we have

Consequently A(t) ~ 0, where the equality holds only in the absence of plastic flow. Since
A ?: 0, the condition A = 0 must eventually be reached and this condition corresponds to
shakedown.

It should be noted that in the above definition of plasticity "time" denotes a loading
parameter, in creep it is the real time. As a consequence, time-dependent behaviour of safe
stresses should be interpreted as a dependence on the real time. For instance, during
instantaneous loading the real time "stops" and the field {JI} is constant since this field is
not connected with a possible plastic strain change.

For unlimited creep the above theorem defines the possibility of shakedown. In the
case of shakedown stresses, at any point of the structure, moving inside the yield surface,
the change in the stress field continues according to the elastic and creep behaviour of the
material. Residual stresses (Jij depend entirely on elastic and creep properties of the material
and the structure. In order to describe the behaviour of the structure, loaded periodically
over a long period of time, for most materials it is possible to assume 9 = const or
limg(t) = goc at t --+ 00, where goo = const. In this case a safe stress field is defined as a
steady cyclic creep state (Frederick and Armstrong, 1966; Boyle and Spence, 1983).

Now consider the above result in generalized variables. The necessary condition for
shakedown in generalized variables can be expressed as
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(11 )

where the function Fa is connected with appropriate elastic loci and depends on sij' The
condition described by eqn (11) is also sufficient. Indeed, let us write eqn (10) in the form

(12)

where

A2 (t) = Lf Aijk'(0'0-0'0)(at,-atadV+Lr Aijk,(sij-sij)(at,-at,)dV (13)
~ ~ a J~

For clarity in the following discussion, assume the material properties of the substructures
are the same.

Now, since

and

it follows

A· () - "f ( (s»)('''+ '" "'''')dV 0I t - - L., O'ij-O'ij Gij Gij -Gij <
r.x Vet

(14)

In eqn (13) the second term is zero since Aijk,at" Aijk,at, are kinematically admissible strain
rate fields and Sij, sij are statically admissible self-equilibrated stress fields of each substruc­
ture.

Let us define

then

A2 (t) = I A~~(Q~r) - Q~r»)(Q~ar) _ Q~or»)
,

where

with u~r) residual generalized displacements and u~r) residual generalized elastic dis­
placements.
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From the equilibrium and kinematic conditions of the whole structure we have

LQ~r)u~r) = 0; L(Q~~r)_Q~r))(u~~r)_ti~r))= 0
" .

and then

A2 (I) = - 2)Q~r) - Q~r))(u;;' + ti~; - u~:) = - L(Q~) - Q~))(u;;' + u;;: - ti;~). ,
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Now it follows from eqns (7), (8) and (11) that Ait) < 0, and then from eqns (12) and
(14) that A(t) < 0 also. Thus the necessary and sufficient condition for shakedown of the
creeping structure is the existence of time dependent residual generalized forces Q~r),

meeting the condition of eqn (11) for any substructure at any instant of time.
Typically in the formulation of shakedown problems external loads and displacements

are given with unknown constants or time-dependent factors are used. In the case of creep
the conditions of eqns (9) and (11), as well as in the case of its absence, alternative
appropriate conditions (Gokhfeld and Cherniavsky, 1980; Konig, 1987) for the static
shakedown theorems are represented as extremum problems with respect to these constants
or factors. The presence of creep strains alters the whole structural behaviour, and the
shakedown problem becomes the special extremum problem of cyclic creep. This problem
is simple to resolve if a cycle of the external actions includes instantaneous overloads, which
are required, while creep takes place in the cycle under some prescribed loads. A more
complicated situation seems to be the case when creep takes place in a cycle under several
combinations of "high" loads. It should be noted that the constitutive equations, eqn (5),
only give approximate results for loading conditions which cause large changes (rotations)
in the direction of principal stress.

KINEMATIC CONDITIONS OF SHAKEDOWN FOR CREEP

The static theorem proved in the above allows the formulation of several variations of
corresponding kinematic theorems. The first uses a kinematically admissible cycle of inelas­
tic strain rates t;jo + t;';o with T as a cycle time. Existence of these strains reflects the
stabilization of deformation process under periodic loading (Gokhfeld and Cherniavsky,
1980).
Theorem. The structure will not shakedown, under the thermoelastic stresses O"~P cor­
responding to external actions Qm(t), O(x" t) within prescribed limits, if there can be found
an admissible cycle of inelastic strain rates t;/o + t;)O such that

where o"u is the stress field corresponding to the assumed cycle of inelastic strain rate and
derived from the load Q;" and u~), Pi) correspond to a steady cyclic creep state for given
Qm, 8 in the absence of plastic strains.

To establish this result, we assume that the shakedown condition of eqn (9) is valid
and a safe residual stress exists, i.e.

rJu = Pu; (16)
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rdtL(<Tij-<T&e))(e;;o +e;/o) dV

=rdt L(<Tij-<T~p-p;j)(e;io+eijo)dV+ rdt Lpij(e;;o +e;;o) dV

rdt Lpij(e;io+e;jo) dV = - rdt LP;AdV =rdt Lp;J6;jdV;

L<TWe;jdV= L(<T~;e)+pt+p;Je;;'dV= Qmti~)+ f/il;jdV+ Lpfie;jdV;

r pfie;jdV= - rpte;jr dV = - rptAiik,lh,dV= rBtpijdV;
Jv Jv Jv Jv

Due to the convexity of the functionsfand <D in eqns (4) and (5)

Since the residual stress field Pij is periodic it follows that

The resulting inequality then can be written as

This inequality, and the equalities of eqn (16), contradict the assumption in eqn (15). Thus
shakedown is impossible if the relation given by eqn (15) is valid.

In terms of generalized variables we write
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(17)

The last condition may be used for both the whole structure and for a substructure.
The practical realisation of the conditions given by eqns (15) and (17) supposes the

availability ofrealistic inelastic strain histories (that is, very close to the strain corresponding
to the real limit cycle). It is simple to see now that previous simplified kinematically
admissible plastic (and creep) strain rates fields, which are usually used in classical shake­
down analysis, fail to adequately take into account the influence of creep:

Let B;jo be kinematically admissible plastic strain rate. In this case we have the usual
strong version of Koiter's Theorem [26], which states that shakedown has not taken place
if

(18)

Indeed, let us assume that the shakedown condition of eqn (9) holds good and a safe
residual time-dependent stress field Pi) exists.

where

due to convexity.
If £;)0 are kinematically admissible, and Pi) correspond to the unloaded state, then the

last integral vanishes and the resulting inequality contradicts the assumption of eqn (18)!
The requirement of the construction of a realistic strain rate history to estimate the

effect of creep complicates the use of the conditions given by eqns (15) and (17). However,
this form of the kinematic theorem requires a kinematically inadmissible cycle of plastic
strain rates at creep. It is possible to formulate another version of the kinematical condition.

In contrast to the above let (Ju be a stress field corresponding to an assumed arbitrary
(not necessarily compatible) cycle of plastic strain rates Bij which is on the yield surface.
Theorem. The structure will not shake down if, together with thermoelastic stresses (J~)

corresponding to external actions given within prescribed limits, there can be found an
arbitrary cycle of plastic rates £;)0 such that

(19)

where (Ju are yield surface stresses corresponding to assumed cycle of plastic strain rates
and Pi) is a solution corresponding to the steady cyclic creep for the given action in the
absence of plastic strain.
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To establish this result, assume that the shakedown condition of eqn (9) is valid and
that the time-dependent stress field Pu is a safe residual stress field

(20)

Then

due to convexity. This inequality together with equality required by eqn (20) contradicts
the assumption ofeqn (19). Thus shakedown is impossible, if the relation given by eqn (19)
holds true.

If during a single cycle plastic flow takes place instantaneously, then it is possible to
use a strong version of the above theorem with the condition of inadaptation in the form

i ( e)).n dV i,·n dV
(J,} - (Jij CliO < Pi/cliO

V V

(21)

where e;}O are arbitrary plastic strain rates.
Arbitrary plastic strain rates e;}O should be chosen to minimize a locus of external

thermo-mechanical loading. In particular, they may be chosen as kinematically admissible
plastic strain rates and then the condition of eqn (21) is reduced to the condition of eqn
(18), and the effect of creep disappears.

It is straightforward to establish that a structure composed of substructures will not
shake down if

(22)

where a cycle of generalized plastic displacement rate fields of substructures u;;'o is arbitrary
(not necessarily compatible) and Q;,)') are yield surface generalized forces determined by
the plastic displacements rates in accordance with the associated flow rule

The proof of the condition given in eqn (22) is analogous to the above using the
convexity condition, eqn (7).

In general, in contrast to the classical approach (Gokhfeld and Cherniavsky, 1980;
Konig, 1987) the condition given byeqn (22), as well as that given by eqn (21), does
not require kinematically admissible inelastic strain field in substructures. Shakedown
conditions arising from the theorems of this section are sufficient ones.

EXAMPLES

Consider the periodic two-step loading of a rectangular section beam by an axial force
P and a bending moment M. The beam material is aluminium alloy DI6T whose elastic
and creep properties at a temperature of 200°C are given in Kuznetsov and Moshkin (1967)
and Shorr (1970) as follows:

The modulus of elasticity E = 60 GPa, yield stress (Jy = 330 MPa.
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where O"e is the effective stress, MPa.
The beam has the following dimensions: a half depth is equal to 0.016 m and a half

width is equal to 0.01 m.
The first program of loading is given by: PI = 0 and M] = 588 Nm at the first step of

a cycle. P2 = 0 and M 1 = 882 Nm at the second step of a cycle. The first step lasts four
hours. Instantaneous cyclic overload, including both loads, is possible at any instant during
the cycle.

The steady cyclic creep state for this problem was calculated using a direct method
described in Shorr (1964) and Shorr (1970). It is worth noting that this method allows the
use of numerical procedures (such as finite element) and can be used for any structure.

To satisfy the kinematic condition, eqn (21), it was assumed that

e~ = sgn(y)C(t);,Ji; 0" = O"y ate~ ~ 0 and 0" = -O"y ate~ ~ 0

where y is the dimensionless distance from the middle of depth.
The function C(t), t E [0, T], may be chosen arbitrarily according to the form of the

loading. If we anticipate short-term plastic strains at t = t" s = 1,2, ... , then it would take
the form C i= 0 at t = t, and C = 0 at t i= ts ' In the example under consideration C i= 0 at
some instant during a cycle. Values of the exponent f1 were obtained from the condition of
minimum overload.

The locus of safe force combinations corresponding to instantaneous overloads is
shown as an interaction diagram in Fig. 1. In this case all loci are symmetric.

The second program of loading assumes: PI = 68.8 kN and M] = -763 Nm at the
first step of a cycle, P2 = 0 and M I = 882 Nm at the second step of a cycle. The first step
lasts six hours: the cycle is nine hours. Instantaneous cyclic overloads, for both loads, occur
at the beginning ofeach step. The loci of safe forces corresponds to instantaneous overloads,
obtained from the condition given by eqn (9), are shown in an interaction diagram in
Fig.2.

It is clear from the interaction diagrams that creep alters the shape, size and location
of the shakedown locii.

CONCLUSION

In this paper, the classical approach to shakedown has been extended in a novel way
to include unlimited material creep. Unlike most other treatments of the problem, the
shakedown and creep conditions are not considered separately. It has been shown that the
new static theorem for shakedown at creep implies two kinematic theorems, one connected
with a kinematically admissible cycle of inelastic strain rate and the other with a kine­
matically inadmissible cycle of plastic strain rate.

All the theorems have also been considered in terms of generalized variables.
Although perfect-plasticity and a time-hardening creep model have been used, these

results should remain valid for other material models provided they provide convergence
of internal stresses in a creeping structure at large times.

These results have been demonstrated on a simple beam problem.
Finally, it is believed that these results can form the basis for a simple and effective

inelastic analysis technique for shakedown under creep conditions. Suitable numerical
procedures are currently being investigated to implement these new results for generalized
models, in particular finite element substructures where the nodal displacement rates and
forces on the surface of an assembly of finite elements (considered as a substructure) are
taken as the generalized variables. This approach would allow an efficient analysis of large
repetitive structures under periodic loading to be considered.
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overload, eqn (9). -.. -.. -.. Locus of safe loads for instantaneous overload, upper bound, eqn (19).
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